Calcium and vitamin D supplements are not recommended to help prevent hip fractures

A recent meta-analysis  published in JAMA (2) of research on the efficacy of calcium and vitamin D supplements to help prevent hip fractures and other types of bone fractures in Senior Citizens or post-menopausal women found no benefit compared to placebo or no treatment.  The meta-analysis included 33 clinical trials involving 51,145 participants.

The brief overview article does not mention if harm was found but concludes with the simple statement that the findings do not support a routine recommendation or use of calcium and vitamin D supplements in community dwelling older people. Read more: Thumbs Down on Calcium and Vitamin D to Prevent Hip Fracture (1)

Adequate magnesium in a form the body is able to absorb well, which may require a topical form such as soaking with magnesium sulfate salt (Epsom salt) or magnesium chloride products, is required for maintaining bone health. The minerals silicon and boron are also important and the mineral strontium in microgram amounts may help. Vitamin K from leafy green vegetables and green herbs and spices (or in the form of vitamin K2 supplementally may be helpful) is also important for maintaining bone density. (3)

  1. Jack Cush, MD, Thumbs Down on Calcium and Vitamin D to Prevent Hip Fracture, Medpage Today, Jan 13, 2018, https://www.medpagetoday.com/primarycare/dietnutrition/70497?xid=nl_mpt_DHE_2018-01-16 (Medpage Today)
  2. Jia-Guo Zhao, MDXian-Tie Zeng, MDJia Wang, MDet al, Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis, JAMA. 2017;318(24):2466-2482,     https://jamanetwork.com/journals/jama/article-abstract/2667071?redirect=true (2)

  3. Charles T Price, Joshua R Langford, and Frank A Liporace,

    Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet, Open Orthop J. 2012; 6: 143–149.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330619/ (3)

 

EMFs and Intracellular Calcium – Magnesium is nature’s calcium channel blocker

Electromagnetic fields, (EMFs) are the non-ionizing radiation that makes WiFi connections work and other devices like televisions and cellphones. The electronic details are beyond my field of experience and they are generally claimed to be harmless however research is being done on the health effects on people and other species. As more and more ‘hotspots’ become active and there is discussion of making entire regions WiFi spots the question of whether the radiation is truly harmless or not is important.

The research that has been performed suggests that the mode of action is on the ion channels in cell membranes called voltage-gated calcium channels (VGCCs). The EMF radiation seems to activate ion channels and allows the interior of the cell to fill with calcium which then can proceed to activate membrane breakdown and other actions within the cell. Oxidative stress can involve an excess of calcium within the interior of the cell which leads to other free radical chemicals – electrically active chemicals which antioxidant nutrients can help deactivate. See: (1)

Oxidation is a normal part of cell function as it is how glucose sugar energy is freed for use. Too many oxidative free radical chemicals also called, reactive oxygen species (ROS), can overpower the natural antioxidant chemical pathways and lead to increased cell damage and even cell death. (2, 3, 4)

Ion channels refer to chemicals that contain atoms that have a positive or negative charge which can be used to provide energy for chemical reactions. Ions in nature generally are found in pairs with a balance of positive and negative charges so the grouping is fairly stable. Calcium and magnesium both have ionic forms with a chemical charge of +2, which means they are missing two electrons. Sodium and potassium have ionic forms with a chemical charge of +1 – they are missing one electron each.

An ion is an atom or chemical that has more protons than electrons and carries a positive charge or has more electrons than protons and carries a negative charge, while a free radical specifically has at least one unpaired electron in its outer electron shell/valence which makes it very reactive but does not necessarily mean an electron is missing nor suggest a negative charge. Depending on their chemistry they may be able to receive or donate another electron and are very reactive, very active chemically, as the outer shell prefers to be stable chemically. The presence of an unpaired electron makes the free radical chemically encouraging other chemicals to give up or receive the unpaired electron even if the other chemical is more chemically stable. (7) The electrons in an atom are arranged around the inner ball of positively charged protons and neutrally charged neutrons in layers of electrons (valences) which prefer to be in groups of 2, 6 or 8 electrons, so a free radical with an outer layer with one electron might want to donate it while one with an outer shell with seven electrons might want to receive an extra electron.  Element valences are slightly different than what might be expected looking at the Table of Elements – here is a chart of the typical ion or free radical charges: (6)

Oxygen can carry an electrically negative charge of -2, meaning it can accept two additional electrons in its outer valence. And hydrogen can accept or donate an electron, +1 or -1, (6) which chemically can result in our most important molecule for life – water, H2O, formed from two atoms of hydrogen sharing their unpaired outer electron with one atom of oxygen which wants an additional two electrons. The slight preference for different electric charges gives the molecule of water a slight polarity, the oxygen part of the water molecule has a slight negative charge on average while the hydrogen parts of the molecule have slight positive charges. (8) A more thorough description of the chemical structure of the water molecule and its electrical charge distribution with illustrations is available here: (12).

Why is this important? Because our bodies are made up of at least 70% water and electromagnetic radiation does have effects on water (9) so a basic understanding of the chemistry can help understand the more complex issues of why having region wide areas of WiFi might affect health of humans and other animals, plants and possibly even microbial life. There is evidence that microbes can modify nearby DNA of other species via EMFs generated by the microbial DNA when both sets of DNA are in a watery dilution. (10, [1602 from ref 9]) This may increase infection or risk of cross contamination of infectious substances. We don’t know what we don’t know. The research may simply confirm the need to be concerned about Electromagnectic fields on DNA. The negative effect of EMF exposure to DNA and an increase in DNA breakdown/fragmentation was mentioned in the first link. See: (1)

Research that looked for epigenetic effects on DNA that might be associated with leukemia or other cancerous changes found that Extremely Low Frequency-Magnetic Fields which have been labeled potentially carcinogenic as some association with leukemia has been noted, did not consistently lead to epigenetic changes in the study. Changes that did occur were more likely to be found when the genetic material, called chromatin, was in a more open and active form rather than when it was in the condensed, non-replicating form. (13) Pregnancy would be a time when DNA is expected to be more active and infancy and childhood are also times when growth and replication of cells is expected. Concerns and a review of available research about the risk of EMF radiation for adults and childhood development is discussed in a Special Section of the journal Childhood Development: (14)

Calcium channel blocker medications have been found to help reduce the effects of EMF radiation for individuals who seem to be more sensitive to ill effects from the form of radiation than the average person. See: (1)

Magnesium is nature’s calcium channel blocker so there may be an underlying deficiency of magnesium in the the people who are more sensitive to EMFs. A number of conditions can make the intestines absorb less magnesium and more calcium than average and the kidneys can be better at holding onto calcium and more likely to excrete magnesium than average. The food and water supply is not as rich in magnesium as it was during earlier centuries of human development. Magnesium deficiency as a risk factor in sensitivity to EMFs is discussed in the first link and it introduces a protective factor that can be increased with more variety of vegetables and other phytochemical rich foods in the diet – nuclear factor erythroid-2-related factor 2 (Nrf2). See: (1)

Specific foods or phytochemicals mentioned to help increase Nrf2 include:

  • sulforaphane from cruciferous vegetables, (such as broccoli and cauliflower);
  • foods high in phenolic antioxidants, (This is a large group including bright yellow and red fruits and vegetables, and deep purple produce. The group includes the subgroup flavonoids which include anthocyanins, flavonols, and it also includes the less familiar subgroup chalcones which are found in the commonly used fruits apples, pears and strawberries. The group also includes aldehydes which are found in vanilla and cinnamon, phenolic acids which include salicyclic acid, and tannins which are found in tea, coffee and wine. Baking cocoa and cherries, beans and whole grains are also mentioned, the summary point would be eat more fruits and vegetables; see: (11))
  • the long-chained omega-3 fats DHA and EPA, (salmon, tuna, sardines, krill oil, ground flax meal, walnuts, hemp seed kernels);
  • carotenoids (especially lycopene), (such as carrots, winter squash, sweet potatoes, cantaloupe, apricots, and lycopene is in tomato, watermelon, pink grapefruit, guava); 
  • sulfur compounds from allum vegetables, (such as onions, garlic, shallots, green onions); 
  • isothiocyanates from the cabbage group and
  • terpenoid-rich foods. (Terpenes are found in real lemon and lime oil, rosemary, oregano, basil and other aromatic green herbs).
  • The Mediterranean and the traditional Okinawan Diets are also mentioned as being Nrf2 promoting diets. See: (1)

A 2012 article that discusses the science known at the time and reviews cellphone cases designed to redirect EMF radiation away from the user available at the times suggests some health evidence exists but that the information is not conclusive yet but that no study has been longer than ten years. Children have less dense bone structure and may be accumulating more life time exposure so limiting use of cellphones around children or their use by children may be playing it safer until more research is available. (5) Turning off cellphones when not needed can save battery time and would be turning off the WiFi when it is not needed. You can always check for messages when you turn it back on again. Using a hard wired computer at home or at least turning off the laptop at night is recommended along with other tips in the first link. See: (1)

Disclaimer

Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert)

  1. Joseph Mercola, The Harmful Effects of Electromagnetic Fields Explained, wakeup-world.com, Dec. 22, 2017, https://wakeup-world.com/2017/12/22/the-harmful-effects-of-electromagnetic-fields-explained/ (1)
  2. Chapter 1: Cell Injury, Cell Death,
    and Adaptations, sample, not final copy, Elsevier, pdf http://www.newagemedical.org/celldeath-injury-link2.pdf (2)
  3. Khalid Rahman, Studies on free radicals, antixidants, and co-factors., Clin Interv Aging. 2007 Jun; 2(2): 219–236., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684512/ (3)
  4. V. Lobo, A. Patil, A. Phatak, and N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev. 2010 Jul-Dec; 4(8): 118–126., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/ (4)

  5. Joseph Hanlon, Radiation-reducing phone cases: saviours or snake oil?, Aug. 13, 2012, https://www.cnet.com/news/radiation-reducing-phone-cases-saviours-or-snake-oil/ (5)

  6. Helmenstine, Anne Marie, Ph.D. “Valences of the Elements – Chemistry Table.” ThoughtCo, Mar. 7, 2017, thoughtco.com   https://www.thoughtco.com/valences-of-the-elements-chemistry-table-606458 (6)
  7. UCSB Science Line, What is the difference between ion and radical?, 04/01/2015, http://scienceline.ucsb.edu/getkey.php?key=4833 (7)
  8. Biochemistry, Chemistry Tutorial, The Chemistry of Water, biology.arizona.edu, http://www.biology.arizona.edu/biochemistry/tutorials/chemistry/page3.html (8)
  9. Martin Chaplin, Water Structure and Science: Magnetic and electric effects on water, 2001, last update by Martin Chaplin on Nov. 3, 2017, lsbu.ac.uk http://www1.lsbu.ac.uk/water/magnetic_electric_effects.html (9)
  10. [1602 from the above reference] L. Montagnier, J. Aïssa, S. Ferris, J.-L. Montagnier, C. Lavallée, Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences, Interdisciplinary Sciences: Computational Life Sciences, 1(2009) 81-90. L. Montagnier, J. Aissa, E. Del Giudice, C. Lavallee, A. Tedeschi and G. Vitiello, DNA waves and water, Journal of Physics.: Conference Series, 306 (2011) 012007, arXiv:1012.5166v1 (10)
  11. Maria de Lourdes Reis Giada, Chapter 4: Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power, Biochemistry, Genetics and Molecular Biology » “Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidants”, book edited by José A. Morales-González, ISBN 978-953-51-1123-8, Published: May 22, 2013    https://www.intechopen.com/books/oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants/food-phenolic-compounds-main-classes-sources-and-their-antioxidant-power (11)
  12. Martin Chaplin, Water Structure and Science: Water Molecule Structure,  2000, last updated by Martin Chaplin Oct. 15, 2017, lsbu.ac.uk, http://www1.lsbu.ac.uk/water/water_molecule.html (12)
  13. Melissa Manser, Mohamad R. Abdul Sater, Christoph D. Schmid, Faiza Noreen, Manuel Murbach, Niels Kuster, David Schuermann, and Primo Schär,

    ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis, Sci Rep. 2017; 7: 43345.    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339735/ (13)

  14. Cindy Sage, Ernesto Burgio, Electromagnetic Fields, Pulsed Radiofrequency Radiation, and
    Epigenetics: How Wireless Technologies May Affect Childhood DevelopmentContemporary Mobile Technology and Child
    and Adolescent Development, edited by Zheng Yan and Lennart Hardell, A Special Section of Child Development, 2017, Pages 1–8, https://eliant.eu/fileadmin/user_upload/de/pdf/Sage_Burgio_Childhood_2017_Epigenetics.pdf (14)

G3.6.1.8: If magnesium deficiency is cause of a diabetic patient’s pain, why give opioids instead?

Evidence based clinical research from 2009 could have helped save many lives lost to the opioid epidemic if patients were being told and treated with the discovery. (G3.101) Patients with diabetes and chronic pain often don’t experience much if any relief from the use of opioid medications, however that is the standard pain medication that is provided for chronic pain so it is often prescribed to diabetic patients anyway, just a prescription pad after all not a patient (not true). The research study provided magnesium to the diabetic patients as a pretreatment before providing the opioid or along with an IV drip of the medication, and not only was the pain reduced for patients who received magnesium, but the pain level was reduced for several days for the fortunate patients. And some trials of the experimental treatment didn’t provide the opioid medication and yet pain relief was felt by the diabetic patients.

Well that is exciting and it leads me to say – why even bother giving an opioid medication then, if it won’t help to relieve pain that is actually being caused by a magnesium deficiency? Because there is profit to be made by prescribing opioid medications but there isn’t profit to be made writing a magnesium prescription? Pondering is a waste of time for someone in pain.

The research discussion seemed to focus on using 30 mg of magnesium with IVs of morphine or other opioid medication for better pain control, but didn’t address or stress the fact that the 300 mg dose of magnesium had reduced pain levels for patients on its own, without any opioid medication having been given along with the nutrient. Pain control without needing an addictive drug that can cause death if overdosed?

Common sense can be inexpensive – consider the benefits of resolving a problem instead of treating symptoms and ignoring the underlying cause. (Magnesium can also be deadly in overdoses, but that really isn’t as common a cause of death as opioid overdoses.)

  • Read more: Magnesium ions and opioid agonists in vincristine-induced neuropathy, (G3.101).
  • A more recent study found a significant difference between magnesium levels between the patients with diabetes and the control group. Significantly lower levels of magnesium were also noted in association with insulin resistance factors although not with fasting blood sugar levels. Read more: Association of Serum Magnesium Deficiency with Insulin Resistance in Type 2 Diabetes Mellitus, (G3.122)

Trying to replace a natural function with a patented medication is using patient’s pain for the purposes of profit.

Calcium channel blocker medications (PPIs for example) are trying to close the gates and keep the calcium out – and magnesium would be delighted to do that as nature intended if enough of the mineral were being absorbed from the intestines. However many issues with our modern food supply and the contaminants it may contain, may be leading to poor absorption of magnesium and increased loss of magnesium by the kidneys, (too much active hormone D3 can cause increased calcium absorption and loss of magnesium). Note the frequent use of the word “may” – more research is needed, in the meantime an Epsom salt bath or foot soak or use of a topical magnesium chloride product could bypass poor intestinal absorption problems. The magnesium sulfate used in Epsom salt would also provide sulfate which may also be beneficial due to possible contaminants in our modern food supply.

Talking about doing things “traditionally” is nice but our children are not growing up in the same chemical environment that we did, and we didn’t get to experience the food supply that our grandparents enjoyed.

Calcium channel blocker medications make a large profit for the pharmaceutical company – magnesium cannot be patented.

Now that it is clear that emotions and environmental triggers can cause inflammation, which at the same time is a cause of feeling “pain,” it is easy to see why childhood trauma or severe traumatic experiences or ongoing trauma can lead to developing inflammatory conditions such as inflammatory bowel conditions or fibromyalgia and migraine pain. The next section moves into psychological conditions that can be due to emotional trauma but may cause physical symptoms as well as mental symptoms.

See a healthcare provider for medical advice, diagnosis or treatment.

  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.

The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert)

References:

Only one? – yes, it is an important one:

I found a more recent one that supports the premise that insulin resistance and Type 2 Diabetes may involve an underlying deficiency of magnesium.

G3.6.1.7: TRPV channels – the comfort of vanilla, the heat of capsaicin.

Before leaving the topic of “getting to know your TRP channels,” I’d like to introduce the vanilloid family. They were among the first TRP channels to be identified with lab techniques. This is all very tiny stuff, difficult to work with compared to a craft or construction project in the full size world we can see without a microscope. It is easy, however, to see when someone is scratching or wincing from pain, so the lab technicians and research scientists are to be commended for their fine eye for microscopic detail.

Vanillin or vanilloid receptors can have a calming effect on the body – baked goods with vanilla have a little extra besides love soothing the body. However some types of TRVP channels can also be stimulated by hot pepper due to its capsaicin content. (G3.99) Capsaicin is the active phytochemical that causes a feeling of “hot” when hot peppers are eaten – because it activated a TRPV channel which activates a nerve to send a signal to the brain that is most likely to be interpreted as “hot” although some people learn to enjoy the feeling, or may be genetically different and experiencing slightly differently than other people who couldn’t imagine eating very hot, hot peppers (G3.100)

The aroma of vanilla can lead to an emotional feeling of comfort even without eating a food containing the phytochemical that can activate the TRPV channels. “Aroma” does involve nerves being activated in response to a chemical in the air that enters the nostrils. Tiny amounts of “vanilla” aroma are entering the nose and physically activating TRPV channels which physically activate nerve signals that tell the brain “something” happened. This time it wouldn’t be as obviously “hot” as the capsaicin though, the vanilla is activating a different TRP channel which would activate a different nerve. If hot peppers had been experienced before the memory of them would be strong enough to remember not to eat them or touch them again. Making “noxious” chemicals, irritants or toxins, is a plant defense mechanism to encourage animals to not eat the plant unless it is ready for the seeds to be spread. A delicious fruit smells delicious when it is ripe and the seeds are ready to be “planted” somewhere other than right where the plant is growing. Some plants make seed pods that catch the wind or have burrs and attach to animal fur as animals walk by, and other plants make delicious fruit or other nutritious seeds to encourage animals to eat them, and carry the seeds elsewhere to be “planted” later (whenever the animal defecates). Nature is amazing.

Vanilla is a delicious smelling seed pod so the plant must want its seeds to be eaten. For delicious history and recipe information see Primer: Vanilla Part One and Two, by Jasmine, a culinary blogger.  (G3.102, G3.103)

We learn from previous experiences when to avoid something and when to reach for a second helping. If the brain had experienced home baked cookies in the past, then the scent of them baking any time in the future might set off an expectation of delicious food and activate saliva glands in addition to causing a calm or pleasant emotional response to the aroma of vanilla or a comforting memory from childhood. Aromas can also be tied to emotional responses that were learned in childhood or at any time in a trauma situation. Positive memories associated with an aroma may be triggered by re-experiencing the favorite fragrance or negative memories might also be triggered by a reminder of something associated with the trauma.

Cancer treatments can be so nauseating that patients are counseled to avoid favorite foods during the first few days after the treatment in order to prevent negative associations of nausea being linked to their favorite food.  When feeling “under the weather” there is a natural instinct to want to tempt the appetite with a comfort food – but if it is most likely going to be thrown up and the hope is that a few nutrients get absorbed before that happens then a bowl of oatmeal or a entree from an expensive restaurant would be equally unappealing on the way back up and the unusual meal might be more likely to cause memories of the experience. So – the common sense recommendation from dietetics eat the oatmeal while feeling sick or something neutral and save the favorites for later.

TRP channels – what were they again?

Physiology and Pharmacology of the Vanilloid Receptor, (G3.98) Excerpt: “In addition to the contribution of the vanilloid receptor as a target of the neurogenic inflammation underlying different diseases, TRPV1 is gaining interest for the treatment of neuropathic, postoperative and chronic pain and, recently, for the therapy of epithelial disorders [epithelial = skin or membrane]. Thus, for instance, topical capsaicin or resiniferotoxin have been used in postherpetic neuralgia, diabetic neuropathy, postmastectomy pain and arthritis [64,103]. Recently, TRPV1 has been clearly validated as a key target for management of chronic pain in bone cancer [42]. As a result, the development of specific TRPV1 antagonists is a central focus of current drug discovery.” (G3.98)

To review: magnesium is the ion that is needed inside of the cell to power the TRP or ion channel’s ability to stop some chemicals from entering the cell’s interior while allowing other chemicals to enter. Magnesium is the soldier at the gate with the energy to stand sentry all day and night – if present. If there is magnesium deficiency, the sentry with energy to keep the gate shut is gone and any chemical floating around in the fluid outside of the cell that is small enough to fit through the open ion channel is able to  flow through the unguarded gates. The capsaicin that can treat pain when used topically is over stimulating the receptors to the point where they are no longer sending any pain signals. When there is a magnesium deficiency then calcium itself can be a cause of pain.

Inside the interior of the cell calcium can activate the cell function and cause it to overwork to the point of cell death similarly to the “excitotoxins” such as glutamate or aspartic acid, both used in the food supply as flavorings – they also excite the tongue’s taste buds. MSG, aspartame and Neotame were included in the list of chemicals that might activate TRPA1 receptors which are associated with several chronic pain and chronic itch conditions.

 Calcium signals the cell to overwork, which leads to inflammation and signals of pain. Nerve signals are activated by inflammatory chemicals which are also “pain” signals as perceived by the brain – inflammation hurts because it is activating “pain” nerves. “Inflammation,” “oxidative stress,” and “pain” are all experienced as the same thing to the brain. So if someone at work is annoying you and you just can’t stop thinking about it – you might be physically hurting yourself, consider taking a walk in nature or buying a fern instead. Smelling vanilla scented essential oil products may also provide some comfort.

  • The research team suspect that “calcitonin gene related peptide (CGRP)” is involved in producing changes underlying the condition of “pain” and “inflammation” for the condition of arthritis at least. Inflammatory chemicals produced in one area of the body could travel and send nerve signals that led to inflammatory pain symptoms being felt in other areas of the body – so over-thinking can hurt? Read more: New Study Proves that Pain is Not a Symptom of Arthritis, Pain Causes Arthritis. Newsroom, University of Rochester Medical Center, urmc.rochester.edu, Sept. 29, 2008, (G3.109)

However CGRP has also been found to be involved in helping to suppress severity of symptoms in autoimmune diabetes. Providing CGRP therapy in an animal based research study helped reduce oxidative stress chemicals and the damage they can cause to pancreas cells that can eventually lead to developing autoimmune diabetes. (G3.114) Researchers working with human patients who have diabetes theorize that those people with a reduced response to stress are the people who seem to progress to diabetes most quickly. (page 19, G3.115) Chemicals similar to CGRP have also been tested therapeutically for heart disease patients and has been found to have some benefits for reducing hypertension, cardiac hypertrophy, and heart failure. (G3.116)

As a dietitian the question I next ask when I learn about a chemical in the body that seems to promote health is how do we make it for ourselves? How can we better assist patients to make it for themselves rather than being dependent on a daily medication? What does a person need to make CGRP ?

Drumroll – an answer does already exist in medical research – magnesium. Providing magnesium directly to an area of bone with a fracture in need of healing, was found to effectively promote increased bone healing – possibly due to a measured increase in levels of CGRP.  (G3.117G3.118)

So would you rather have a medical professional provide you a daily medication at a profit to the medical system – or be informed of ways to change your diet and lifestyle so that you could make the life saving chemical naturally the way healthy people do, everyday?

Like most things in life – too much CGRP isn’t good either. Genetic differences may be involved in risk for migraine as elevated levels of CGRP have been found in patients with migraines. Attempts to block the chemical Substance P were found to be ineffective but use of CGRP agonists/blockers were found to help patients with migraine. (G3.119)

And sugar is something that is a negative when eaten in excess. Too much sugar in the diet typically also means fewer nutrients are being consumed as refined sugar has no additional B vitamins or magnesium, while a piece of bread or fruit would provide some nutrients in addition to the naturally found sugars. Excess sugar in the bloodstream leads to an increased loss of magnesium by the kidneys because the mineral is necessary in order to remove the excess sugar from the blood and add it to the urinary waste stream. (G3.120) B vitamins are needed in order for the body to be able to break down the molecules of sugar so the stored energy is released. Smaller waste chemicals are produced from the larger sugar molecule that will also need to be excreted by the body as a normal part of metabolism (metabolism is roughly equal to all of the body’s many chemical, energy and digestive cycles). A diet with excess refined sugar has also been associated with heart disease risk. (G3.121)

See a healthcare provider for medical advice, diagnosis or treatment.

  • Disclaimer: Opinions are my own and the information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes.
  • The Academy of Nutrition and Dietetics has a service for locating a nutrition counselor near you at the website eatright.org: (eatright.org/find-an-expert)

References: