The voices that people with schizophrenia are hearing are probably their own inner thoughts

This is kind of breaking news — new news: A research scientist, with the aid of a powerful microphone, was able to record a patient with schizophrenia speaking to themselves in a sub-vocal voice. The patient was not aware that they were speaking at the time.

The research is very early, a first in its field perhaps, but the theory seems to suggest that the patients with schizophrenia symptoms may have some disconnect with the normal ability to identify internal thoughts and sub-vocal speech as being self generated and instead are interpreting the internal thoughts as coming from some external source of whatever type the person might think.

(Example of my interpretation of sub-vocal speech: the almost silent muttering under your breath that you don’t notice yourself doing, until suddenly you do notice that you’re talking to yourself, and then you stop because you don’t want anyone to notice. The brain of a someone with schizophrenia may no longer recognize the voices of self-talk, or those of voices in memories or in imagined conversations, as being internally self-generated and instead probably tend to make up some explanation for  whatever or whoever might be doing the talking that is being heard — hearing voices. Our internal chatter can get busy and sometimes pretty mean, it would be scary to not realize that it is just yourself. )

Read more, of the actual article:  [http://www.slate.com/articles/health_and_science/medical_examiner/2016/03/schizophrenia_and_subvocal_speech_why_schizophrenics_hear_the_voices_of.html]

This seems like very important news — patients with schizophrenia may be able to be gently reminded that those voices are just brain mumbles, and to try to ignore them.

People with schizophrenia are generally not associated with violence unless there is also a history of violent behavior, alcohol or drug abuse, or more persecutory fantasies. [citation missing, I don’t remember where I read that recently, but I posted it in a comment somewhere.]

Mental health symptoms sometimes may be due to underlying issues that could be easily fixed, rather than considering the patient as being ‘mentally ill’ for the rest of their life and likely being placed on medications that tend to have severe side effects. Effective health care would seek for any underlying causes that can be returned to a state of normal function with the simplest solutions possible, “Let food be thy medicine,” the first part of the quote by Hippocrates may be the most important part.

There are several different nutrient deficiencies that can cause symptoms similar to schizophrenia or may be involved in an underlying cause for the condition, this information was from an older post of mine but it was not grouped together:

Regarding trends seen around the world in rate of schizophrenia, it has been dropping in South Korea and increasing in Japan. North Korea has the highest rate for the region: http://global-disease-burden.healthgrove.com/l/58241/Schizophrenia-in-South-Korea

Malnutrition in North Korea is more likely involved in the increased rate for the nation than cat ownership due to the many years of sanctions against the country. B12, folate, zinc and vitamin D deficiencies and excess copper may be involved in risk of developing schizophrenia like symptoms. Folate and calcium are considered to be potentially deficient for the typical Korean diet. Fortified milk products aren’t typically consumed so extra vitamin D from that source wouldn’t be available. Iodine is also a nutrient that may be deficient in the diet. http://adoptionnutrition.org/nutrition-by-country/korea/

And low iodine levels can increase risk for hypothyroidism which has been found to be more common as a comorbid condition with patients with schizophrenia. https://www.ncbi.nlm.nih.gov/pubmed/30350120

Bromine excess can compete with iodine and may increase risk of hypothyroid or schizophrenia symptoms. http://www.kumc.edu/school-of-medicine/integrative-medicine/health-topics/iodine-supplementation.html

Low thyroid levels have been associated with schizophrenia in early treatment of the disease and has been used in more recent care of patients by an alternative physician. The following link includes excerpts from many older research articles and one mentions kryptopyrroles being elevated in some patients so a genetic cause may be involved for some patients that would cause low zinc and low B6 levels (pyroluria). http://www.orthomolecular.org/library/jom/2001/articles/2001-v16n04-p205.shtml

Schizophrenia treatment and other psychiatric care in Russia does not seem to be an ideal to follow anywhere else – or there: http://www.sras.org/snezhnevsky_schizophrenia_soviet_psychiatry However Russians on average do own a lot of cats, especially in comparison to residents of South Korea: https://www.statista.com/chart/10267/which-countries-have-the-most-cat-owners/?utm_content=buffer35f5b&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer 

/Disclosure: This information is provided for educational purposes within the guidelines of fair use. While I am a Registered Dietitian this information is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

Addition – current medications used to treat schizophrenia may be increasing oxidative stress. https://link.springer.com/article/10.1007/s12031-018-1165-4

Methyl Donors and BPA

Methyl donors are chemicals that can donate a methyl group which is made up of one carbon atom and three hydrogen atoms. Methyl groups on DNA signal the genes to remain unactivated, to stay in an off position. Removing the methyl groups can signal the gene to become active. A gene that has few methyl groups atttached may be more easily activated than normally.

This excerpt includes methyl donors and at least one methyl remove-er (BPA).

“Nutritional components that may influence the methylation of epigenetically susceptible loci include folic acid, vitamin B6 and 12, selenium, choline and betaine, methionine, soy genistein, bisphenol A, tocopherols, diallyl disulfide in garlic, and tea polyphenols [28]” [1]                                               *tocopherols are the vitamin E group.

Bisphenol A is not a natural component of food as I understand nutrition but BPA may be part of the plastic lining of cans and other food packages such as plastic drink bottles. It is also found on the slick coating of some types of register receipts. BPA may cause hypomethylation of DNA, fewer methyl groups on the DNA may cause activation of genes.

Bisphenyl A can act similarly to the hormone estrogen. Soy genistein is a phytoestrogen that may help block harmful effects of the estrogen mimetics. Other methyl donors that may help block the effects of BPA are the B vitamins folic acid, vitamin B6 and B12 and choline and betaine.

Avoiding the supplement forms and eating more food sources of Folate and methyl B12 may be more beneficial for people with defects in the methylation cycle.(MTHFR is one example). Taking the unmethylated supplement forms may interfere with the smaller quantities of bioactive folate and B12 that might be found in natural sources.

Adequate B vitamins prenatally may also help protect against DNA changes in the infant.

Folate or Folic Acid:

Folate is the form of the vitamin found in food and it is more bioactive than Folic acid. Folic acid is the form that is commonly available as a supplement and in fortified foods however it requires adequate supplies of vitamin B12 to be available in order to be converted into a more usable form. A genetic difference may exist in some individuals that prevent the body from being able to convert the inactive Folic acid form into Folate, the methylated bioactive form of the vitamin.

Food Sources of Folate, the bioactive natural form, include: most beans and peanuts, black eyed peas, green peas, grains, asparagus, most dark green vegetables, orange juice, citrus fruits. Fortified cereal and rice are good sources of folic acid, the supplemental form.

Vitamin B12:

Food Sources of Vitamin B12 include: shellfish, fish, meat, poultry, eggs, milk, cheese, dairy products, Nutritional or Brewer’s yeast. Vegetarians who don’t eat dairy, eggs, fish or other meat products may need a supplement or nutritional yeast, a vegan food source of vitamin B12.

Injections of B12 may be needed for better absorption of the nutrient for some individuals with stomach problems. Adequate stomach acid and a cofactor are required for normal absorption of vitamin B12. A genetic difference may be a problem for some people causing them to need the methylated active form of B12 rather than being able to benefit from the more commonly available unmethylated supplement.

Vitamin B6:

Food Sources of Vitamin B6 include: fortified cereal, barley, buckwheat, avocados, baked potato with the skin, beef, poultry, salmon, bananas, green leafy vegetables, beans, nuts, sunflower seeds.

Choline and Betaine:

Choline is also a water soluble essential nutrient that is frequently grouped with the rest of the B vitamins. Choline is found throughout the body but is particularly important within the brain. Betaine is a metabolite of choline. Spinach and beets are rich in betaine. Good sources of choline include egg yolks, soy beans, beef, poultry, seafood, green leafy vegetables and cauliflower.

/Disclosure: This information is provided for educational purposes and is not intended to provide individual health guidance. Please see a health professional for individual health care purposes./

  1. Kyung E. Rhee, et al., Early Determinants of Obesity: Genetic, Epigenetic, and In Utero Influences, International Journal of Pediatrics, Vol. 2012
  2. J. Higdon & V. Drake,  An Evidence-based Approach to Vitamins and Minerals:  Health Benefits and Intake Recommendations, 2nd Ed., (Thieme, Stuttgart / New York, 2012)
  3. “Choline” on whfoods.com: [whfoods.com]
  4. Betaine,” (Feb. 11, 2012) PubMed Health: [ncbi.nlm.nih.gov/]  *link not working, part of the information is available here: [med.nyu.edu]
  5. Rebecca J. Schmidt, et. al. , “Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism,” Epidemiology. 2011 Jul; 22(4): 476–485. [ncbi.nlm.nih.gov]
  6. MTHFR C677T Mutation: Basic Protocol,”